Stable Mapping Using a Hyper Particle Filter

نویسندگان

  • Johannes Pellenz
  • Dietrich Paulus
چکیده

Often Particle Filters are used to solve the SLAM (Simultaneous Localization and Mapping) problem in robotics: The particles represent the possible poses of the robot, and their weight is determined by checking if the sensor readings are consistent with the so far acquired map. Mostly a single map is maintained during the exploration, and only with Rao-Blackwellized Particle Filters each particle carries its own map. In this contribution, we propose a Hyper Particle Filter (HPF) – a Particle Filter of Particle Filters – for solving the SLAM problem in unstructured environments. Each particle of the HPF contains a standard Particle Filter (with a map and a set particles, that model the belief of the robot pose in this particular map). To measure the weight of a particle in the HPF, we developed two map quality measures that can be calculated automatically and do not rely on a ground truth map: The first map quality measure determines the contrast of the occupancy map. If the map has a high contrast, it is likely that the pose of the robot was always determined correctly before the map was updated, which finally leads to an overall consistent map. The second map quality measure determines the distribution of the orientation of wall pixels calculated by the Sobel operator. Using the model of a rectangular overall structure, slight but systematic errors in the map can be detected. Using the two measures, broken maps can automatically be detected. The corresponding particle is then more likely to be replaced by a particle with a better map within the HPF. We implemented the approach on our robot “Robbie 12”, which will be used in the RoboCup Rescue league in 2009. We tested the HPF using the log files from last years RoboCup Rescue autonomy final, and with new data of a larger building. The quality of the generated maps outperformed our last years (league’s best) maps. With the data acquired in the larger structure, Robbie was able to close loops in the map. Due to a highly efficient implementation, the algorithm still runs online during the autonomous exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous localization and mapping in unmodified environments using stereo vision

In this paper we describe an approach that builds three dimensional maps using visual landmarks extracted from images of an unmodified environment. We propose a solution to the Simultaneous Localization and Mapping (SLAM) problem for autonomous mobile robots using visual landmarks. Our map is represented by a set of three dimensional landmarks referred to a global reference frame, each landmark...

متن کامل

An Improved FastSLAM Framework Based on Particle Swarm Optimization and Unscented Particle Filter ⋆

FastSLAM is a framework which solves the problem of simultaneous localization and mapping using a Rao-Blackwellized particle filter. Conventional FastSLAM is known to degenerate over time in terms of accuracy due to the particle depletion in resampling phase. To solve this problem, a FastSLAM method based on particle swarm optimization and unscented particle filter is proposed. The number of pa...

متن کامل

Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark pos...

متن کامل

An SLAM Algorithm Based on Square-root Cubature Particle Filter

The lack of the latest measurement information and the Particle serious degradation cause low estimation precision in the tradition particle filter SLAM (simultaneous localization and mapping). For solve this problem, a SRCPF-SLAM (square cubature particle filter simultaneous localization and mapping) is proposed in this paper. The algorithm fuses the latest measurement information in the stage...

متن کامل

A Marginalized Particle Filtering Framework for Simultaneous Localization and Mapping

This contribution aims at unifying two recent trends in applied particle filtering (PF). The first trend is the major impact in simultaneous localization and mapping (SLAM) applications, utilizing the FastSLAM algorithm. The second one is the implications of the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter in positioning and tracking applications. An algorithm is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009